6,337 research outputs found

    Refinements of Bounds for Neuman Means

    Get PDF
    We present the sharp bounds for the Neuman means SHA, SAH, SCA and SAC in terms of the arithmetic, harmonic, and contraharmonic means. Our results are the refinements or improvements of the results given by Neuman

    Multi-level Monte Carlo methods with the truncated Euler-Maruyama scheme for stochastic differential equations

    Get PDF
    The truncated Euler-Maruyama method is employed together with the Multi-level Monte Carlo method to approximate expectations of some functions of solutions to stochastic differential equations (SDEs). The convergence rate and the computational cost of the approximations are proved, when the coefficients of SDEs satisfy the local Lipschitz and Khasminskii-type conditions. Numerical examples are provided to demonstrate the theoretical results

    Sharp One-Parameter Mean Bounds for Yang Mean

    Get PDF
    We prove that the double inequality JΞ±(a,b)<U(a,b)<JΞ²(a,b) holds for all a,b>0 with aβ‰ b if and only if α≀2/(Ο€-2)=0.8187β‹― and Ξ²β‰₯3/2, where U(a,b)=(a-b)/[2arctan⁑((a-b)/2ab)], and Jp(a,b)=p(ap+1-bp+1)/[(p+1)(ap-bp)]  (pβ‰ 0,-1), J0(a,b)=(a-b)/(log⁑a-log⁑b), and J-1(a,b)=ab(log⁑a-log⁑b)/(a-b) are the Yang and pth one-parameter means of a and b, respectively

    Evaluation of computed tomography images under deep learning in the diagnosis of severe pulmonary infection

    Get PDF
    This work aimed to explore the diagnostic value of a deep convolutional neural network (CNN) combined with computed tomography (CT) images in patients with severe pneumonia complicated with pulmonary infection. A total of 120 patients with severe pneumonia complicated by pulmonary infection admitted to the hospital were selected as research subjects and underwent CT imaging scans. The empty convolution (EC) and U-net phase were combined to construct an EC-U-net, which was applied to process the CT images. The results showed that the learning rate of the EC-U-net model decreased substantially with increasing training times until it stabilized and reached zero after 40 training times. The segmentation result of the EC-U-net model for the CT image was very similar to that of the mask image, except for some deviations in edge segmentation. The EC-U-net model exhibited a significantly smaller cross-entropy loss function (CELF) and a higher Dice coefficient than the CNN algorithm. The diagnostic accuracy of CT images based on the EC-U-net model for severe pneumonia complicated with pulmonary infection was substantially higher than that of CT images alone, while the false negative rate (FNR) and false positive rate (FPR) were substantially lower (P &lt; 0.05). Moreover, the true positive rates (TPRs) of CT images based on the EC-U-net model for patchy high-density shadows, diffuse ground glass density shadows, pleural effusion, and lung consolidation were obviously higher than those of the original CT images (P &lt; 0.05). In short, the EC-U-net model was superior to the traditional algorithm regarding the overall performance of CT image segmentation, which can be clinically applied. CT images based on the EC-U-net model can clearly display pulmonary infection lesions, improve the clinical diagnosis of severe pneumonia complicated with pulmonary infection, and help to screen early pulmonary infection and carry out symptomatic treatment

    A note on the partially truncated Euler–Maruyama method

    Get PDF
    The partially truncated Euler–Maruyama (EM) method was recently proposed in our earlier paper [3] for highly nonlinear stochastic differential equations (SDEs), where the finite-time strong LT-convergence theory was established. In this note, we will point out that one condition imposed there is restrictive in the sense that this condition might force the stepsize to be so small that the partially truncated EM method would be inapplicable. In this note, we will remove this restrictive condition but still be able to establish the finite-time strong LT-convergence rate. The advantages of our new results will be highlighted by the comparisons with our earlier results in [3]

    An Optimal Double Inequality for Means

    Get PDF

    Plasmid encoding matrix protein of vesicular stomatitis viruses as an antitumor agent inhibiting rat glioma growth in situ

    No full text
    Aim: Oncolytic effect of vesicular stomatitis virus (VSV) has been proved previously. Aim of the study is to investigate glioma inhibition effect of Matrix (M) protein of VSV in situ. Materials and Methods: A recombinant plasmid encoding VSV M protein (PM) was genetically engineered, and then transfected into cultured C6 gliomas cells in vitro. C6 transfected with Liposome-encapsulated PM (LEPM) was implanted intracranially for tumorigenicity study. In treatment experiment, rats were sequentially established intracranial gliomas with wild-typed C6 cells, and accepted LEPM injection intravenously. Possible mechanism of M protein was studied by using Hoechst staining, PI-stained flow cytometric analysis, TUNEL staining and CD31 staining. Results: M protein can induce generous gliomas lysis in vitro. None of the rats implanted with LEPM-treated cells developed any significant tumors, whereas all rats in control group developed tumors. In treatment experiment, smaller tumor volume and prolonged survival time was found in the LEPM-treated group. Histological studies revealed that possible mechanism were apoptosis and anti-angiogenesis. Conclusion: VSV-M protein can inhibit gliomas growth in vitro and in situ, which indicates such a potential novel biotherapeutic strategy for glioma treatment.ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ матриксного ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° (М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°) вируса вСзикулярного стоматита (Π’Π’Π‘) ΡƒΠ³Π½Π΅Ρ‚Π°Ρ‚ΡŒ рост Π³Π»ΠΈΠΎΠΌΡ‹ in situ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: сконструирована рСкомбинантная ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π°, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ Π’Π’Π‘, которая Π·Π°Ρ‚Π΅ΠΌ Π±Ρ‹Π»Π° трансфСцирована Π² ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π³Π»ΠΈΠΎΠΌΡ‹ Π‘6 in. ΠšΠ»Π΅Ρ‚ΠΊΠΈ Π³Π»ΠΈΠΎΠΌΡ‹ Π‘6, трансфСцированныС инкапсулированным Π² липосомы М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠΌ (Π›Π˜ΠœΠŸ), ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΈΠ½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½ΠΎ для изучСния туморогСнности. Π’ экспСримСнтС крысам с трансплантированной ΠΈΠ½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½ΠΎ Π³Π»ΠΈΠΎΠΌΠΎΠΉ Π‘6 (исходный ΡˆΡ‚Π°ΠΌΠΌ) Π²Π½ΡƒΡ‚Ρ€ΠΈΠ²Π΅Π½Π½ΠΎ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π›Π˜ΠœΠŸ. АпоптотичСскоС дСйствиС М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ флуорСсцСнцСнтной микроскопии (ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ Π₯Схсту), ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ (ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠΈΠ΄ΠΈΡƒΠΌΠΎΠΌ ΠΉΠΎΠ΄ΠΈΠ΄ΠΎΠΌ), TUNEL Π²Π°ΡΠΊΡƒΠ»ΡΡ€ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ гистологичСски ΠΈ Π²Π°ΡΠΊΡƒΠ»ΡΡ€ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ гистологичСски ΠΈ иммуногистохимичСски с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈ-CD31 ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». 31 ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». 31 ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ лизис ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³Π»ΠΈΠΎΠΌΡ‹ in. Ни Ρƒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ΠΎ с трансплантированными ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π³Π»ΠΈΠΎΠΌΡ‹, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌΠΈ Π›Π˜ΠœΠŸ, Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Ρƒ всСх крыс ΠΈΠ· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»ΠΈΡΡŒ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π›Π˜ΠœΠŸ, ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π±Ρ‹Π»ΠΈ мСньшСго объСма ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΆΠΈΠ·Π½ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Показано, Ρ‡Ρ‚ΠΎ М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ проявляСт Π°Π½Ρ‚ΠΈΠ°Π½Π³ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Π΅ свойства ΠΈ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ Π’Π’Π‘ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ рост Π³Π»ΠΈΠΎΠΌΡ‹ in ΠΈ in. На этой основС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ новая биотСрапСвтичСская стратСгия для лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π³Π»ΠΈΠΎΠΌΠ°ΠΌΠΈ

    The partially truncated Euler-Maruyama method and its stability and boundedness

    Get PDF
    The partially truncated Euler–Maruyama (EM) method is proposed in this paper for highly nonlinear stochastic differential equations (SDEs). We will not only establish the finite-time strong Lr-convergence theory for the partially truncated EM method, but also demonstrate the real benefit of the method by showing that the method can preserve the asymptotic stability and boundedness of the underlying SDEs
    • …
    corecore